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Lecture 7: September 26, 2024

Scribe: Jonathan Lu Noisy channel coding

7.1 Aside: concavity of quantum entropy

Suppose we have two density matrices ρ0 and ρ1. We can mix them together with some probability
weight π to obtain ρ := πρ0 + (1 − π)ρ1. The concavity property of the quantum entropy S tells
us that S(ρ) is at least as large as the mixed entropy πS(ρ0) + S(ρ1). Because it’s so important,
let’s prove the concavity of S.

Theorem 7.1.1. S(ρ) = S(πρ0 + (1− π)ρ1) ≥ πS(ρ0) + (1− π)S(ρ1).

Proof. Let σAB = πρA0 ⊗ |0⟩⟨0|B + (1 − π)ρA1 ⊗ |1⟩⟨1|B. This is the labeled mixture, so that if we
have access to the B system we know which density matrix we have. Note now that

S(A) = S(ρ), S(B) = H2(π) := −π log π − (1− π) log(1− π). (7.1)

Also, by definition, S(A|B) = S(AB)−S(B) and S(AB) = − tr[σ log σ]. The structure of σ makes
it block diagonal, since

σ =

(
πρ0 0

0 (1− π)ρ1

)
, log σ =

(
log ρ0 + (log π)I 0

0 log ρ1 + log(1− π)I

)
. (7.2)

This block diagonal structure makes the calculation of the joint entropy simple:

S(AB) = − tr[σ log σ] = −π tr[ρ0 log ρ0]− π log π − (1− π) tr[ρ1 log ρ1]− (1− π) log(1− π) (7.3)

= H2(π) + πS(ρ0) + (1− π)S(ρ1) (7.4)

= S(B) + S(A|B). (7.5)

We observe that the conditional entropy takes a simple form because the system being conditioned
upon is just a classical probability distribution:

S(A|B) = πS(ρ0) + (1− π)S(ρ1). (7.6)

Therefore, S(ρ) − [πS(ρ0) + (1 − π)S(ρ1)] = S(A) − S(A|B) = I(A;B) ≥ 0. The last inequality
follows from the fact that I(A;B) = D(ρAB||ρA ⊗ ρB) ≥ 0, as we saw in the classical case. The
proof that quantum relative entropy is non-negative is delegated to Problem Set 3.

7.2 Classical noisy channel coding

In lecture 3, we stated Shannon’s noisy coding theorem. Today we will prove it. Recall that
a channel is a conditional probability distribution N(y|x), so that if your input source is the
distribution π(x), the joint distribution of input-output pairs is p(x, y) = π(x)N(y|x). The capacity
of a channel is defined to encode the most amount of information you can send through the channel
with asymptotically small noise.
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Definition 7.2.1. For a channel N , the capacity is given by

C(N) = lim
ϵ→0

lim
n→∞

1

n
log |M(ϵ,N)|, (7.7)

where M(ϵ,N) is the set of messages that can be sent through Nn with error probability ≤ ϵ.

Figure 7.1 shows the model we will adopt, in which we encode a set of messages M into bits
before it is sent through a noisy channel, after which the noisy message is decoded into something
that is hopefully the original message.

Figure 7.1: Encoder-decoder model with a channel in bewteen them.

Theorem 7.2.1 (Shannon’s noisy coding theorem). C(N) = maxπ I(X;Y ).

Before we prove the theorem, let’s assume it’s true and look at some illustrative examples of
channels. For just these examples, let π be the probability that X = 0; we will only do examples
with a single bit.

1. Binary symmetric channel with error probability η. Let x, y be single bits. Then y = x⊕ ρ,
where Pr[ρ = 1] = η. So, the bit gets flipped with probability η. Then

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H2(η). (7.8)

To maximize, note that H2(η) does not depend on π, and H(Y ) ≤ 1. But if π = 1/2, then
H(Y ) = 1. Hence for any δ, we can asymptotically send n(1−H2(η)− δ) bits of information
to the output using n bits of input.

2. Erasure channel. Regardless of the input bit, there is a probability η that the channel maps it
to ⊥ (the “erased” message). Then H(Y |X) = H2(η) as with the binary symmetric channel.
To calculate H(Y ), we note that Y ∈ { 0, 1,⊥} with probabilities π(1− η), (1− π)(1− η), η.
Therefore,

H(Y ) = −π(1− η) log[π(1− η)]− (1− π)(1− η) log[(1− π)(1− η)]− η log η (7.9)

= H2(η) + (1− η)H2(π). (7.10)

So we want to maximize I(X;Y ) = H(Y ) − H(Y |X) = (1 − η)H2(π), which occurs when
again π = 1/2, giving a capacity C = 1− η.

The erasure channel capacity result is particularly remarkable. Consider a situation in which you
and your friend are talking over the phone. Sometimes, the phone glitches with probability η and
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erases whatever your friend said at that time. To remedy this, you might say “what?”, asking your
friend to repeat herself. This protocol has an obvious capacity of 1−η, but it also involves feedback,
allowing the receiver to send information back to the sender. Shannon’s theorem implies by the
above that even without feedback, you can achieve the same capacity!

Now we want to actually prove Theorem 7.2.1. Let Alice send input bits and Bob receive output
bits. Alice will send bits x1, . . . , xn and Bob receives y1, . . . , yn. The intuition for this proof is that
we will only worry about the typical set of Y n, of which there are about 2nH(Y ), since those are
the only strings that will be sent asymptotically. On the other hand, for a given input string xn,
there are about 2nH(Y |X) output strings yn that could have reasonably come from xn. To ensure
decodability, we want these possible string sets for each distinct (typical) xn not to overlap. That
implies we can have at most 2nH(Y )/2nH(Y |X) = 2nI(I;Y ) codewords.

Today we prove the achievability portion of the theorem, and leave the converse to next time.

Lemma 7.2.1. C(N) ≥ maxπ I(I;Y ). That is, for any rate R < maxπ I(I;Y ), there exists an
encoding procedure that decodes with asymptotically vanishing error probability.

Proof. For the proof, we’ll switch back to π = π(x) being a distribution over x. We formalize
the above intuition by using relative entropy. Define qx(y) = N(y|x) just for notation and let
q(y) =

∑
x π(x)qx(y) be the marginal distribution on Y . Then

D(qx||q) =
∑
y

qx(y) log
qx(y)

q(y)
= −H(qx)−

∑
y

qx(y) log q(y). (7.11)

The relation between relative entropy of these distributions and mutual information becomes clear
when we sum over x:∑

x

π(x)D(qx||q) = −
∑
x

π(x)H(qx)−
∑
x,y

π(x)qx(y) log q(y) (7.12)

= −H(Y |X) +H(Y ) = I(X;Y ). (7.13)

Define xn(m) := Enc(m) and consider only xn(m) ∈ Tn
π the typical space, i.e. where i appears nπi

times. Then Nn(xn(m)) = qx1 ⊗ · · · ⊗ qxn , which up to permutation is q⊗nπ1
1 ⊗ · · · ⊗ q⊗nπd

d . Note
that Nn(xn(m)) is itself a probability function and can be evaluated on strings and sets of strings,
so to avoid confusion we will write Nn(xn(m))[S] as the conditional probability of getting strings
in S as output given xn(m) as input. Since relative entropies add for independent distributions,

D(Nn(xn(m)), q⊗n) = nI(X;Y ). (7.14)

By Stein’s lemma from last lecture, there exists for any choices of ϵ, δ, a test set A(m) ⊆ [d]n such
that Nn(xn(m))[A(m)] ≥ 1− ϵ but qn(A(m)) ≤ 2−n(I(X;Y )−δ).

With these guarantees, we are ready to write down our encoding and decoding procedures. For
the encoding, for each m ∈ M , Alice chooses xn(m) ∈ Tπ (or, nearly equivalently, randomly from
πn). Note that the marginal probability holds as expected:

Exn(m)∼πnNn(xn(m)) ≈ q⊗n. (7.15)

To decode, Bob brute-force iterates through A(m), m ∈ M and outputs m when the test passes.
The probability the test fails is

Pr[error] = Pr[wrong test accepts] + Pr[right test rejects] (7.16)

≤ |M |2−n(I(X;Y )−δ) + ϵ. (7.17)

By construction, |M | = 2nR. Thus, if R < I(X;Y )− δ, the first term asymptotically vanishes and
so the error probability will asymptotically be ϵ, as desired.
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