

7.1 Aside: concavity of quantum entropy

Suppose we have two density matrices ρ_0 and ρ_1 . We can mix them together with some probability weight π to obtain $\rho := \pi\rho_0 + (1 - \pi)\rho_1$. The concavity property of the quantum entropy S tells us that $S(\rho)$ is at least as large as the mixed entropy $\pi S(\rho_0) + (1 - \pi)S(\rho_1)$. Because it's so important, let's prove the concavity of S .

Theorem 7.1.1. $S(\rho) = S(\pi\rho_0 + (1 - \pi)\rho_1) \geq \pi S(\rho_0) + (1 - \pi)S(\rho_1)$.

Proof. Let $\sigma^{AB} = \pi\rho_0^A \otimes |0\rangle\langle 0|^B + (1 - \pi)\rho_1^A \otimes |1\rangle\langle 1|^B$. This is the *labeled* mixture, so that if we have access to the B system we know which density matrix we have. Note now that

$$S(A) = S(\rho), \quad S(B) = H_2(\pi) := -\pi \log \pi - (1 - \pi) \log(1 - \pi). \quad (7.1)$$

Also, by definition, $S(A|B) = S(AB) - S(B)$ and $S(AB) = -\text{tr}[\sigma \log \sigma]$. The structure of σ makes it block diagonal, since

$$\sigma = \begin{pmatrix} \pi\rho_0 & 0 \\ 0 & (1 - \pi)\rho_1 \end{pmatrix}, \quad \log \sigma = \begin{pmatrix} \log \rho_0 + (\log \pi)I & 0 \\ 0 & \log \rho_1 + \log(1 - \pi)I \end{pmatrix}. \quad (7.2)$$

This block diagonal structure makes the calculation of the joint entropy simple:

$$S(AB) = -\text{tr}[\sigma \log \sigma] = -\pi \text{tr}[\rho_0 \log \rho_0] - \pi \log \pi - (1 - \pi) \text{tr}[\rho_1 \log \rho_1] - (1 - \pi) \log(1 - \pi) \quad (7.3)$$

$$= H_2(\pi) + \pi S(\rho_0) + (1 - \pi)S(\rho_1) \quad (7.4)$$

$$= S(B) + S(A|B). \quad (7.5)$$

We observe that the conditional entropy takes a simple form because the system being conditioned upon is just a classical probability distribution:

$$S(A|B) = \pi S(\rho_0) + (1 - \pi)S(\rho_1). \quad (7.6)$$

Therefore, $S(\rho) - [\pi S(\rho_0) + (1 - \pi)S(\rho_1)] = S(A) - S(A|B) = I(A; B) \geq 0$. The last inequality follows from the fact that $I(A; B) = D(\rho_{AB} || \rho_A \otimes \rho_B) \geq 0$, as we saw in the classical case. The proof that quantum relative entropy is non-negative is delegated to Problem Set 3. \square

7.2 Classical noisy channel coding

In lecture 3, we stated Shannon's noisy coding theorem. Today we will prove it. Recall that a *channel* is a conditional probability distribution $N(y|x)$, so that if your input source is the distribution $\pi(x)$, the joint distribution of input-output pairs is $p(x, y) = \pi(x)N(y|x)$. The *capacity* of a channel is defined to encode the most amount of information you can send through the channel with asymptotically small noise.

Definition 7.2.1. For a channel N , the capacity is given by

$$C(N) = \lim_{\epsilon \rightarrow 0} \lim_{n \rightarrow \infty} \frac{1}{n} \log |M(\epsilon, N)|, \quad (7.7)$$

where $M(\epsilon, N)$ is the set of messages that can be sent through N^n with error probability $\leq \epsilon$.

Figure 7.1 shows the model we will adopt, in which we encode a set of messages M into bits before it is sent through a noisy channel, after which the noisy message is decoded into something that is hopefully the original message.

Figure 7.1: Encoder-decoder model with a channel in between them.

Theorem 7.2.1 (Shannon's noisy coding theorem). $C(N) = \max_{\pi} I(X; Y)$.

Before we prove the theorem, let's assume it's true and look at some illustrative examples of channels. For just these examples, let π be the probability that $X = 0$; we will only do examples with a single bit.

1. Binary symmetric channel with error probability η . Let x, y be single bits. Then $y = x \oplus \rho$, where $\Pr[\rho = 1] = \eta$. So, the bit gets flipped with probability η . Then

$$I(X; Y) = H(Y) - H(Y|X) = H(Y) - H_2(\eta). \quad (7.8)$$

To maximize, note that $H_2(\eta)$ does not depend on π , and $H(Y) \leq 1$. But if $\pi = 1/2$, then $H(Y) = 1$. Hence for any δ , we can asymptotically send $n(1 - H_2(\eta) - \delta)$ bits of information to the output using n bits of input.

2. Erasure channel. Regardless of the input bit, there is a probability η that the channel maps it to \perp (the “erased” message). Then $H(Y|X) = H_2(\eta)$ as with the binary symmetric channel. To calculate $H(Y)$, we note that $Y \in \{0, 1, \perp\}$ with probabilities $\pi(1 - \eta), (1 - \pi)(1 - \eta), \eta$. Therefore,

$$H(Y) = -\pi(1 - \eta) \log[\pi(1 - \eta)] - (1 - \pi)(1 - \eta) \log[(1 - \pi)(1 - \eta)] - \eta \log \eta \quad (7.9)$$

$$= H_2(\eta) + (1 - \eta)H_2(\pi). \quad (7.10)$$

So we want to maximize $I(X; Y) = H(Y) - H(Y|X) = (1 - \eta)H_2(\pi)$, which occurs when again $\pi = 1/2$, giving a capacity $C = 1 - \eta$.

The erasure channel capacity result is particularly remarkable. Consider a situation in which you and your friend are talking over the phone. Sometimes, the phone glitches with probability η and

erases whatever your friend said at that time. To remedy this, you might say “what?”, asking your friend to repeat herself. This protocol has an obvious capacity of $1 - \eta$, but it also involves *feedback*, allowing the receiver to send information back to the sender. Shannon’s theorem implies by the above that *even without feedback*, you can achieve the same capacity!

Now we want to actually prove Theorem 7.2.1. Let Alice send input bits and Bob receive output bits. Alice will send bits x_1, \dots, x_n and Bob receives y_1, \dots, y_n . The intuition for this proof is that we will only worry about the typical set of Y^n , of which there are about $2^{nH(Y)}$, since those are the only strings that will be sent asymptotically. On the other hand, for a given input string x^n , there are about $2^{nH(Y|X)}$ output strings y^n that could have reasonably come from x^n . To ensure decodability, we want these possible string sets for each distinct (typical) x^n not to overlap. That implies we can have at most $2^{nH(Y)} / 2^{nH(Y|X)} = 2^{nI(I;Y)}$ codewords.

Today we prove the achievability portion of the theorem, and leave the converse to next time.

Lemma 7.2.1. $C(N) \geq \max_{\pi} I(I;Y)$. That is, for any rate $R < \max_{\pi} I(I;Y)$, there exists an encoding procedure that decodes with asymptotically vanishing error probability.

Proof. For the proof, we’ll switch back to $\pi = \pi(x)$ being a distribution over x . We formalize the above intuition by using relative entropy. Define $q_x(y) = N(y|x)$ just for notation and let $q(y) = \sum_x \pi(x)q_x(y)$ be the marginal distribution on Y . Then

$$D(q_x || q) = \sum_y q_x(y) \log \frac{q_x(y)}{q(y)} = -H(q_x) - \sum_y q_x(y) \log q(y). \quad (7.11)$$

The relation between relative entropy of these distributions and mutual information becomes clear when we sum over x :

$$\sum_x \pi(x) D(q_x || q) = -\sum_x \pi(x) H(q_x) - \sum_{x,y} \pi(x) q_x(y) \log q(y) \quad (7.12)$$

$$= -H(Y|X) + H(Y) = I(X;Y). \quad (7.13)$$

Define $x^n(m) := \text{Enc}(m)$ and consider only $x^n(m) \in T_{\pi}^n$ the typical space, i.e. where i appears $n\pi_i$ times. Then $N^n(x^n(m)) = q_{x_1} \otimes \dots \otimes q_{x_n}$, which up to permutation is $q_1^{\otimes n\pi_1} \otimes \dots \otimes q_d^{\otimes n\pi_d}$. Note that $N^n(x^n(m))$ is itself a probability function and can be evaluated on strings and sets of strings, so to avoid confusion we will write $N^n(x^n(m))[S]$ as the conditional probability of getting strings in S as output given $x^n(m)$ as input. Since relative entropies add for independent distributions,

$$D(N^n(x^n(m)), q^{\otimes n}) = nI(X;Y). \quad (7.14)$$

By Stein’s lemma from last lecture, there exists for any choices of ϵ, δ , a test set $A(m) \subseteq [d]^n$ such that $N^n(x^n(m))[A(m)] \geq 1 - \epsilon$ but $q^n(A(m)) \leq 2^{-n(I(X;Y) - \delta)}$.

With these guarantees, we are ready to write down our encoding and decoding procedures. For the encoding, for each $m \in M$, Alice chooses $x^n(m) \in T_{\pi}^n$ (or, nearly equivalently, randomly from π^n). Note that the marginal probability holds as expected:

$$\mathbb{E}_{x^n(m) \sim \pi^n} N^n(x^n(m)) \approx q^{\otimes n}. \quad (7.15)$$

To decode, Bob brute-force iterates through $A(m)$, $m \in M$ and outputs m when the test passes. The probability the test fails is

$$\Pr[\text{error}] = \Pr[\text{wrong test accepts}] + \Pr[\text{right test rejects}] \quad (7.16)$$

$$\leq |M| 2^{-n(I(X;Y) - \delta)} + \epsilon. \quad (7.17)$$

By construction, $|M| = 2^{nR}$. Thus, if $R < I(X;Y) - \delta$, the first term asymptotically vanishes and so the error probability will asymptotically be ϵ , as desired. \square